
© 2019 Cray Inc.

swarren@cray.com

P r e p a r i n g t o O p t i m i z e f o r

I n t e l X e o n P h i

“ K n i g h t s L a n d i n g ”

Steven Warren

© 2019 Cray Inc.

• Processor architecture overview

• Notes about MCDRAM in cache-mode

• Preparing to optimize your application for KNL

• Target Science

• Scaling and Communication

• Memory and cache footprint analysis

• Creating a test case

Discussion topics

2

© 2019 Cray Inc.

In te l Xeon Phi
“Knights Landing”

Processor architecture overview

3

© 2019 Cray Inc.

KNL Processor Architecture

4

© 2019 Cray Inc.

KNL Tile Architecture

5

© 2019 Cray Inc.

KNL Tile Frequencies and Turbo Mode

• Two turbo tile frequencies implemented

• “All tiles active” turbo, +100 MHz

• “Single tile active” turbo, +200 MHz

• Two below-base frequencies

• Heavy AVX instructions, -200 MHz

• Under some conditions -100 MHz also possible

• Xeon Phi 7250 tile frequencies

• 1.6 GHz single tile turbo

• 1.5 GHz all tiles turbo

• 1.4 GHz base frequency

• 1.3 GHz

• 1.2 GHz AVX

6

© 2019 Cray Inc.

Xeon Phi “Knights Landing” Compatibility
• Runs existing Xeon x86 64-bit executables

• Linux commands

• ISV applications

• Applications built for Xeon processors

• Existing Xeon-targeted libraries will work

• If library is not a critical compute component, recompiling not needed

• Intel 16+ MKL has AVX-512 support enabled at run time

• Xeon executables can take advantage of all KNL features

• Except AVX-512 (requires recompiling)

• Except moving selected data to MCDRAM in flat mode (requires source changes)

• Optimal instruction selection and organization is different

• Recompiling will probably improve performance

• HPGMG-FV - High-Performance Geometric Multi-Grid benchmark

• Run on 64 KNL nodes, 64 cores per node, quad/cache

• CCE 8.5, craype-sandybridge: 1.264 billion DOF/s

• CCE 8.5, craype-haswell: 1.447 billion DOF/s

• CCE 8.5, craype-mic-knl: 1.866 billion DOF/s

7

© 2019 Cray Inc.

• DDR - Double Data Rate

• Refers to the 6 channels of DDR4-2400 DIMM main
memory

• MCDRAM - Multi-Channel DRAM

• High-bandwidth on-package memory

• MCDRAM Cache

• MCDRAM configured as a last-level memory-side
cache

• Flat MCDRAM

• MCDRAM configured as addressable memory

• User-visible as a NUMA node with memory but no
cpus

• EDC - Embedded DRAM Controller

• Interface to MCDRAM, 8 controllers per processor

• Tile - A logic block including two cores sharing an L2
cache

• Includes an on-chip mesh interface and CHA

• CHA - Caching Home Agent

• Per-tile block which manages cache coherence (L2 and
MCDRAM)

• MC or IMC - Integrated (DDR) Memory Controller

• OPIO - On-Package I/O

• Interface from KNL processor to MCDRAM

• HBM - High Bandwidth Memory

• HBM is a memory hardware technology developed by AMD and
partners

• Sometimes used informally to refer to flat MCDRAM on KNL

• VPU - Vector Processing Unit

• AVX-512 SIMD execution unit, 2 per core

• SNC - Sub-NUMA Cluster

• Processor mode which divides memory capacity and bandwidth
into 2 or 4 NUMA nodes per memory type

• Also divides the cores and MCDRAM cache among the DDR
NUMA nodes

Acronym and Terminology Reference

8

© 2019 Cray Inc.

Core to Core: Comparing Xeon Phi to Xeon

Feature Haswell Knights

Landing

How KNL compares

Number of cores 16 68 A lot more cores (4X)

Core frequency 2.3 to 3.6 GHz 1.4 to 1.6 Lower frequency (2X)

Serial scalar rate Lorenz=3048 874 3.5X slower

L1 cache size 32KB 32KB Same

L1 load bandwidth 2X 32 bytes 2X 64 bytes Higher per cycle (2X)

L1 load rate 7 billion/sec 3 billion/sec Same per cycle, but lower clock

L2 cache size 256KB 1MB/2 cores Much larger (2X per core)

L2 bandwidth 64 bytes/cyc 64 bytes/cyc Same per cycle, but lower clock

L3 cache size 2.5 MB/core N/A Many kernels bandwidth limited

9

© 2019 Cray Inc.

Node to Node: Comparing Xeon Phi to Xeon

Feature Haswell Knights Landing How KNL compares

Number of cores 32 68 More cores (2X)

DDR 8 channels 6 channels 25% less bandwidth, capacity

MCDRAM N/A 8 channels, 16 GB Unique feature

Memory Bandwidth ~120 GB/s 490 GB/s MCDRAM rate (4X)

FP Peak (vector) ~1.2 TF/s ~2.6 TF/s Higher peak (2X)

FP Peak (scalar) 294 GF/s 326 GF/s Slightly higher

Instruction Peak 387 Ginst/s 190 Ginst/s Half peak rate

Package Power 270 W 215 W Less power

10

© 2019 Cray Inc.

A c loser look at
us ing MCDRAM
in cache mode

© 2019 Cray Inc.

MCDRAM
• MCDRAM is a configurable memory that is smaller than main memory but has

much higher bandwidth

• Can be configured as a “memory cache”

• Can be configured at 100% explicitly managed (Flat mode)

• Can be configured 50% cache and 50% explicitly managed

• MCDRAM can sustain 300-450 GB/s of bandwidth

• KNL DRAM can sustain only about 90 GB/s

• Haswell DRAM can sustain about 120 GB/s

• When configured Flat mode the programmer must decide what goes into
MCDRAM and what does not

• When configured as a cache, the hardware attempts to keep most recently used
data in the cache

• However the cache is a “direct-mapped” cache

© 2019 Cray Inc.

• There are 6 memory locations that map to the same location in cache

• Assumes a 96 GB DRAM config. Larger memory will have more

• Cache is direct mapped, i.e., there is only 1 “way”

Basic picture of memory and a direct mapped cache

MEM MEM MEM MEM MEM MEM MEM MEM

MEM MEM MEM MEM MEM MEM MEM MEM

MEM MEM MEM MEM MEM MEM MEM MEM

MEM MEM MEM MEM MEM MEM MEM MEM

MEM MEM MEM MEM MEM MEM MEM MEM

MEM MEM MEM MEM MEM MEM MEM MEM

$ $ $ $ $ $ $ $

© 2019 Cray Inc.

• Because the hardware is automatically bringing data into the MCDRAM, the user
does not have to do anything to the code to start benefiting from MCDRAM

• The MCDRAM is much larger than the Haswell caches, so some structures that
never fit before suddenly will fit

• However, there is a word of caution

Pros of using MCDRAM as a cache

© 2019 Cray Inc.

Start filling pages in memory

• OS starts to place pages that contain the variable “A” for each PE as those PEs reach
the allocation statement

• Each page placement is more or less “random” based on when various PEs arrive at
the allocate, and the order in which the pages were free, perhaps even by a previous
program

PE3’s A

PE5’s A

PE4’s A

PE2’s A

PE1’s A

$PE1’s A $PE4’s A $ $PE2’s A $ $PE3’s A $PE5’s A $

© 2019 Cray Inc.

Conflicts are bound to happen

• If two PE’s A are aliased to the same cache location, then thrashing may occur if
those PEs both reuse A at “about” the same time

PE6’s A

PE3’s A

PE5’s A

PE4’s A

PE2’s A

PE1’s A

$PE1’s A $PE4’s A $
$

conflict
$ $PE3’s A $PE5’s A $

© 2019 Cray Inc.

• Any job that uses more than 16 GB/node is guaranteed to see some amount of
cache thrashing, but how much?

• Good news: The cache is really large, so there is a lot of potential for reuse and
there is a relatively low probability of a bad aliasing conflict occurring

• Conflict probability is also a function of size of the data being reused

• This is why we often don’t observe this on single node runs

• Bad news: All of these are NON-ZERO probabilities, and the dice are rolled on
every node in the job

• As the number of nodes in the job increases, the probability that aliasing
problems will occur approaches 100%

Cache thrashing will occur, but how often?

© 2019 Cray Inc.

• If your performance is impacted by the effectiveness of the MCDRAM cache, you
may experience scaling problems

• This will likely show up in communication, but will be because of
synchronization, not bandwidth or latency constraints

• Normal profiling may not point to the offending compute region

• Only a few PEs might be slow, and thus that signal could be drowned out by
the other PEs in the job

Direct mapped cache causing scaling problems

© 2019 Cray Inc.

• Flat mode is good if your entire data set can fit into 16GB

• However if your code uses more than 16 GB of data, it may be difficult to find
just the right arrays to place there

• Flat mode seems likely to be unforgiving if some bandwidth data does not fit

• Cache mode seems to capture reuse well on many apps

• And it requires no work on the part of the user

• But is susceptible to thrashing if important data aliases to the same location

• This becomes more likely as node counts increase

• Each mode has pros and cons

MCDRAM Usage Conclusions

© 2019 Cray Inc.

Prepar ing to
Opt imize for KNL

20

© 2019 Cray Inc.

• Identify science problems that you anticipate running on KNL

• The science problems will help focus efforts on what routines and issues are important

• Estimate how many nodes you will use during the run

• Does the code already scale this high?

• What can we say about communication

• The combination of science problem and number of nodes will allow one
to estimate memory footprints, array sizes, and trip count sizes

• This information is critical

21

What Science do you want to run on KNL

© 2019 Cray Inc.

• How high does the code scale

• Does your code use both OpenMP and MPI?

• How many OpenMP threads can you utilize

• What is limiting your scaling?

• Communication overhead?

• Lack of parallelism on a given science problem?

• Understanding and optimizing scaling is critical

• KNL requires scaling to higher numbers of cores to achieve the same level of performance

• Scaling impacts loop trip counts, memory footprints, and more

22

Scaling and communication

© 2019 Cray Inc.

• Do you expect your problem to consume a significant amount of main memory?

• Main memory is about 96 Gbytes

• Is it possible that your problem will fit into fast memory?

• Fast memory is 16 Gbytes per node

• Can be configured as a “memory cache”

• Can be configured at 100% explicitly managed

• What is the memory access pattern for the routines and loops identified as important?

• What are the trip counts in that loop nest?

• How much data is accessed?

• How much is used more than once?

23

Understanding your memory footprint is critical

© 2019 Cray Inc.

• Use all of the information about your target science problem to develop a test case that can be
optimized

• Want that test case to be as representative as possible, but without using 100s of nodes

• Adjust time step if possible, not problem size

• Want to capture the memory footprint, bandwidth and scaling attributes but still limit run time

• Should use multiple nodes, 4-32 nodes might be ideal

• If you have communication, you want to make sure that behavior is represented in the test
case

• You want to run on enough nodes to capture some communication and scaling
characteristics, but few enough to allow for more rapid turn around and not burn up allocation

24

Create test case that represents a real science run

© 2019 Cray Inc.

• Are you sure? Verify

• Cray has come across many examples where performance was limited by something
in some place that was not expected

• Use statistical profilers to determine where the time is being spent

• Are there obvious key routines using a significant percentage of run time?

• Are there key loops or code sections?

• How many routines before you hit 80% of the run time

• Is the profile different for different science problems?

• If you start heavy optimization efforts before you get a representative profile you risk
wasting a significant amount of your time and effort

25

Where is the time being spent

© 2019 Cray Inc.

• Do the loops vectorize?

• Vectorization is very important to achieving high performance rates

• Edison vectors are 4 DP words, KNL has 8 DP words

• Cannot take full advantage of functional units without vectorization

• Unlikely to take full advantage of memory bandwidth

• Scalar performance on KNL core is approximately 1/3rd the speed of a Haswell core

• Common inhibitors

• Dependencies

• Indirect addressing may prevent vectorization or make it less efficient

• i.e., A(indx(i)) =

• Function / subroutine calls

• “IF” tests inside of inner loops may slow execution and prevent vectorization

• More…

26

Vectorization

© 2019 Cray Inc.

• Sometimes it is easy

• One or more loop nests are streaming through a huge amount of data

• Little to no reuse

• Sometimes it is difficult

• Some trip counts are large

• But some data are reused

• Not obvious what the compiler did

• Not obvious if the data remains in cache

• Counters can be difficult to interpret

• Difficult to keep track of different levels of cache

• Try to run kernel using 1 or 2 fewer cores

• Adjust the number of OMP threads

• Use srun --ntasks-per-socket= option to spread mpi ranks across more sockets

• If performance per core increases, kernel may be bandwidth bound

• Try and examine trip counts and reference patterns

27

How can you tell if you are memory bandwidth bound?

© 2019 Cray Inc.

• Identify the target science problem and the number of nodes you plan on using
on KNL

• Understand your memory footprint and how to utilize MCDRAM

• Create a representative test case that runs on multiple nodes

• Verify where the time is being spent using a statistical profiler

• Vectorization and Memory bandwidth optimizations are likely to be your primary
means of compute-based optimizations

Summary

28

THANK YOU

Q U E S T I O N S ?

swarren@cray.com

@cray_inc

linkedin.com/company/cray-inc-/

cray.com

